
CDF/DOC/ONLINE/PUBLIC/6693
November 2, 2003

Version 1.0

Level 3 Farm Administration Tools

N. Leonardo

Massachusetts Institute of Technology

Abstract

It is described sysadmin tools and procedures developed for maintenance,
recovery and installation of the Level 3 computing farm.

Keywords: Online Linux farm, Maintenance, Recovery, Installation.

Foreword

The Level3 computing farm functions as a processor based filtering sys-
tem as part of the data acquisition and trigger systems of CDF Run II.

It constitutes a computing resource formed of approx. 300, dual-processor
computers under the Linux OS, continuously performing tasks of online
event reconstruction and analysis.

This document contains the description of administrative tools put to-
gether with the purpose of effectively performing necessary actions over
many farm nodes, such as those involved during rescue and upgrade. Farm
and technical details are deliberately provided, making this a suitable guide
to system administration of the Level3 farm.

It is based on general farm sysadmin and maintenance experience over
the last couple of years, during which the tools have been developed and
extensively used.

mailto:leonardo@fnal.gov


Contents

Foreword 1

1 The Level 3 online computing system 3
1.1 The DAQ/Trigger subsystem . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Computing farm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Maintenance & Administration . . . . . . . . . . . . . . . . . . . . . . 7

2 Recovery 8
2.1 Boot image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Remote procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Recovering filesystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Filesystem corruption . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Automating procedure . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Installing filesystems . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Installation through recovery . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Generality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Installation 15
3.1 Kickstart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Configuring system installation . . . . . . . . . . . . . . . . . . 16
3.1.3 Post configuration . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 CDFlevel3 workgroup . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Installation disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Hard drive based installation . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Installation through recovery . . . . . . . . . . . . . . . . . . . . . . . . 24

A Recovery image configuration and procedure implementation 28
A.1 Configuration files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.2 Include a new binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.3 Create a recovery floppy . . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.4 Remote recovery procedure . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.5 Filesystem recovery scripts . . . . . . . . . . . . . . . . . . . . . . . . . 31

B Install configuration and implementation 34
B.1 Configuration files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
B.2 Installation scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



3

1 The Level 3 online computing system

1.1 The DAQ/Trigger subsystem

The Level3 system forms a critical component of the data acquisition and trigger
systems of the Experiment.

A thorough description is presented in the EVB/L3 systems’ Manual (CDF Note
6138) I have written some time ago [1].

1.2 Computing farm

The Level3 system is realized as a farm formed of approximately 300, dual-processor,
Linux boxes.

Two of these — Gateway1 and Gateway2 — serve as proxies on behalf of the entire
farm. All messages coming in and out of the system are relayed through the Gateways,
which themselves do not process data directly.

The remaining are worker nodes, residing on a private network, through which data
flows. These are organized in (16) subfarms, each formed of so-called Converter (1),
Processors (∼ 16), and Output (each serving two subfarms) nodes.

Gateway1

Runs the Event Builder proxy.

Contains two partitioned disks, employed for running and backup systems.

Partition table excerpt for local filesystems:

/dev/hda1 /boot
/dev/hda2 /
/dev/hda5 /tmp
/dev/hdb6 /home
/dev/hdb7 /cdf

The /home filesystem is exported to the entire farm.

Level3 filter code and common products directories are mounted from external
online machines.

Gateway2

Runs the Level3 proxy.

Contains two partitioned disks, employed for running and backup systems.

Partition table excerpt for local filesystems:

/dev/hda5 /
/dev/hda6 /tmp
/dev/hdc10 /cdf

http://www-cdfonline.fnal.gov/evbl3shift/evbl3pager.html
http://www-cdf.fnal.gov/htbin/notes/cdfnoteSelGet?number=6138
http://www-cdf.fnal.gov/htbin/notes/cdfnoteSelGet?number=6138


4 1 THE LEVEL 3 ONLINE COMPUTING SYSTEM

Level3 filter code and common products directories are mounted from external
online machines.

Converter

Contains ATM card and required modules.

Contains multi(4)-port Ethernet card and required modules.

Partition table excerpt for local filesystems:

/dev/hda1 /boot
/dev/hda2 /
/dev/hda4 /cdf

Processor

Partition table excerpt for local filesystems:

/dev/hda1 /boot
/dev/hda2 /
/dev/hda5 /tmp
/dev/hda6 /cdf

Output

Partition table excerpt for local filesystems:

/dev/hda1 /boot
/dev/hda2 /
/dev/hda5 /tmp
/dev/hda6 /cdf

Additional structure

/local

UPS/UPD [7] bootstrap are installed in this directory.

The setups* files are located in /local/ups/etc/; soft links to these setup files
should exist on /usr/local/etc/, as e.g.

/usr/local/etc/setups.sh → /local/ups/etc/setups.sh

Individual product chain files should be located on the database directory:

- Gateways: /cdf/products/upsdb/product name

- Worker nodes: /local/ups/db/product name



1.2 Computing farm 5

/cdf/products

The products themselves are installed in this directory. Each product instance
should contain a ups directory with corresponding table (where in particular the
setup actions are defined), located as in

/cdf/products/product name/Linux+2.4/version/ups/product name.table

On the Gateways the following link is required (/cdf copied daily from Gateway
1 to 2):

/usr/products → /cdf/products.

Products root and ooc are installed on all farm nodes.

/cdf/level3

This directory contains the level3, relay, and executable code; the following struc-
ture is assumed by the code:

/cdf/level3/filter:
bin
calib
cint
control
etc
include
lib
relay
tar
tcl

/log

The following link for log files is assumed /log → /cdf/log

Products

UPD product install

Available UPD [7] products may be installed from Gateway1, using the command
upd install. This requires passive ftp data transfer, export FTP PASSIVE=1;
the user should have products group permissions, check /etc/group.nis.

The following illustrates the steps necessary for upd product installation; An
example of a gcc product instance is given.

ssh user@b0l3pcom1

the following should occur at shell invocation
source /local/ups/etc/setups.sh



6 1 THE LEVEL 3 ONLINE COMPUTING SYSTEM

setup upd

confirm local OS flavor ups flavor

check local and available distribution [7] product instances

ups list gcc

upd install gcc v3 0 1 -f Linux+2.4

UPS product creation

For creating an ups product the following guidelines are provided:

place the source code in appropriate location
/cdf/products/product name/Linux+2.4/product version/

create ups directory containing product table file as in
/cdf/products/product name/Linux+2.4/product version/ups/product name.table

create version file in database; e.g. in Gateway1
/cdf/products/upsdb/product name/product version.version

update current chain file in database; e.g. in Gateway1
/cdf/products/upsdb/product name/current.chain

Alternatively, product declaration may be done automatically by issuing ups
commands. The following exemplifies this for an instance of the product root.

> cd /cdf/products/root/Linux+2.4
> mkdir v3_05_07
> cp -r [my_private_code_location]/* v3_05_07
> ups declare root v3_05_07 \

-f Linux+2.4 \
-z /cdf/products/upsdb \
-r /cdf/products/root/Linux+2.4/v3_05_07 \
-m root.table \
-U $UPS_DIR \
-M /cdf/products/root/Linux+2.4/v3_05_07/ups

> ups declare root v3_05_07 -g current
-f Linux+2.4
-z /cdf/products/upsdb

> setup root
> which root
/usr/products/root/Linux+2.4/v3_05_07/bin/root

The following exemplifies this instance version file of product root.

FILE = version
PRODUCT = root
VERSION = v3_05_07
FLAVOR = Linux+2.4



1.3 Maintenance & Administration 7

QUALIFIERS = ""
DECLARER = leonardo
DECLARED = 2003-10-17 22.33.44 GMT
PROD_DIR = /usr/products/root/Linux+2.4/v3_05_07
UPS_DIR = /local/ups/prd/ups/v4_6_3/Linux-2
TABLE_DIR = /usr/products/root/Linux+2.4/v3_05_07/ups
TABLE_FILE = root.table

The same product instance may be undeclared issuing the command

ups undeclare root v3 05 07 -z /usr/products/upsdb -f Linux+2.4

Remarks

Booting sequence

When bringing up the full farm the following booting sequence should be re-
spected to avoid complications:

b0l3gate1

b0l3gate2

b0l3boot-vx (a.k.a. b0l3backup)

Ethernet switches

Converter, Processor, Output nodes

1.3 Maintenance & Administration

Continuous and attentive administration of the Level3 farm is a true necessity for ensur-
ing its optimal performance, which is expected. It can certainly become an absorbing
activity when perfomed by a single individual.

The farm has been functioning continuously with its full size for a couple of years
now. Several tools have been developed to deal efficiently with maintenance require-
ments and other necessary sysadmin actions, on possibly many farm nodes.

These tools have been extensively used since, for both fixing and preventing failures
which would otherwise disrupt the optimal functioning of the system, and consequently
of data taking by the experiment. In spite of a few serious, large scale problems 1 dili-
gent maintenance efforts have made them of no consequence for the best performance
of the system.

Tools most convenient for — otherwise rather challenging — system operations to be
performed on possibly many farm nodes, such as regular filesystem recovery, operating
system upgrades, new nodes installation, exist, having been extensively tested, for use
on the Level3 farm.

1 At some point a persistent hardware failure was diagnosed in as many as half of the nodes
in the farm; the problem was diligently handled through assiduous maintenance, and has allowed
notwithstanding for optimal farm operation.



8 2 RECOVERY

2 Recovery

Investigation and recovery from problems on individual and many nodes is achieved
through extensive use of properly customized L3 recovery floppies.

These form convenient tools for executing required actions on nodes which fail to
boot healthily. These actions can be instructed on a terminal connected to the node,
or specified in advance on a file at a remote server.

Common actions include filesystem and code installation (typically necessary on a
large number of nodes); hard drive inspection, partioning, filesystem creation, master
boot record repairing; modifying boot loader and system configuration files. Other
general, system supported, user specified actions are readily implementable as well.

2.1 Boot image

The recovery floppy is formed of a configurable boot image. This should contain a small
Linux kernel with the proper drivers to boot the system in order to perform recovery
operations, allowing as well customization in a simple fashion. The farm recovery
procedure described here is general and can be in principle implemented using any
such, rescue-oriented, available Linux image.

The particular rescue image which has been employed is the tomsrtbt disk im-
age [3], described as a ”floppy which has a root filesystem and is also bootable”. This
contains a very small distribution of Linux, with most commands useful for system
recovery, most necessary drivers, and network connectivity capabilities, fitting a single
floppy disk. The most attractive feature nevertheless is that the distribution comes
with a number of scripts which can be used to readily create and transfer a modified
image.

It contains on the other hand some objectionable features as well according to farm’s
requirements. It does not recognize the multi-port Ethernet cards used in Converter
and Output nodes; this has required the use for recovery purposes of the on-board port.
The current version does not contain the sfdisk Linux command, which would have
otherwise been specially useful (it would facilitate the typical process of hard-drive
partitioning+installation).

Also bothersome was the necessity of explicit login (requiring direct name/password
typing at the console); this was fixed by compiling an appropriately modified sulogin.c

code (where getpasswd() has been removed), enforcing static linking, and transferring
it to the image.

Installation

An appropriate tar ball containing the tomsrtbt image can be downloaded from one
of the listed [3] sites. The accompanying script install.s allows to transfer the raw
image to a floppy disk; fdformat should be executed on the floppy in case it is not
properly formated already.



2.2 Remote procedure 9

Image customization requires a few steps. Executing unpack.s tomsrtbt.raw cre-
ates an expanded version of the raw image structure. Files located in the directory
tomsrtbt-version.unpacked/2/ can be modified as desired. An accordingly cus-
tomized image can then be produced and installed simply by executing the scripts
buildit.s and install.s, respectively, from the unpacked directory.

The Level3 customization presented is general, its dependence on image releases
being minimal; although, extra functionality may become available.

2.2 Remote procedure

The raw rescue system is not adapted to the farm imperative of simultaneous recovery
of many computers. A procedure was therefore developed allowing fast recovery of a
large number of nodes in the farm, in a shortest time period – crucial for having the
full farm readily operational, and not disturbing data taking. Indeed, it has allowed
for safe, full-scale farm shutdowns and rebootings, with the guaranty of a reasonably
short time for recovery of possibly many (typical case) failing nodes.

To decrease the time of an individual recovery operation, the original login program
is replaced by a modified one wherein that process is made automatic; sleeping times,
reserved for other systems’ or interactive usages, are reduced or simply eliminated.

To cope with the necessity of dealing effectively with many nodes, it is essential to
make the recovery procedure completely automated, whith no need for user’s direct
input. This is achieved by adapting the recovery system’s configuration files so the
desired actions are performed at the very first stages of system initialisation, while
other, default actions are not executed if not necessary.

A simplified initalization table (/etc/inittab, the configuration file to init) is
defined, where the instruction ::sysinit:/etc/rc.S is included. This instructs initial
execution of /etc/rc.S, where some image configuration scripts are sourced, and at the
end of which a call to a procedure execution script is added. The later can contain a set
of intended actions on the node, ending for example with a /sbin/reboot instruction.
The advantage of these features is the earliest execution of the recovery actions right
at initialization level, and interruption of the default initialization process itself once
the intended actions have been completed. Effectively, unnecessary, time consuming
actions and configurations do not occur, by avoiding definition of common run level ’s
and their execution.

Furthermore, a remote procedure is put together where the procedure execution
script is stored on a remote server, accessible via the network. This clearly favors
generality and convenient procedure development. Indeed, once such an image has been
created and transferred to a portable disk, the later can then be used quite generally,
for execution of whatever actions are defined on a convenient script file residing on a
remote, permanently accessible node.

This is achieved in practice as follows. A script named fixnode.all.remote.floppy is
defined, and executed at the end of the file /etc/rc.S, whose function is to

1. configure the network,



10 2 RECOVERY

2. mount an nfs accessible location, and

3. execute a remotely located script where user-specified actions are pre-defined.

Notice also that, if after a certain number of actions has taken place (e.g. network
configuration) one wishes to still have access to a shell using a console directly connected
to the node, this is made possible simply by including a call to a login program. This
program can be e.g. the sulogin alluded to before, and can be included with the image
or, e.g. for lack of available space on the floppy, simply placed on the remote location.

2.3 Recovering filesystems

2.3.1 Filesystem corruption

The recovery procedure here discribed was originally developped to cope with a per-
sistent hardware failure affecting consistently a considerable fraction of the farm. It
was verified that filesystems in those nodes were being progressively corrupted with
time, eventually inducing their failure. In that case, it would then interrupt data tak-
ing, requiring an expert to arrive and remove it temporarily from the online hardware
database.

No practical hardware solution to this problem was found, nevertheless its effects
were surpassed through persistent maintenance efforts. These involved periodic (ini-
tially weekly) rebooting of the farm, enforcing checks of all filesystems every time, and
systematic recovery of those shown defective.

Track was kept of the frequency of filesystem failures over the farm, both in a
recovery, automatically generated log file and node statistics page [2]. This allowed
for an assignment of a failure expectation to nodes in the farm, use of which has
been made in preventive replacements and posterior hardware upgrades, as well as in
progressive transfer of nodes with higher failure rates to less critical, offline usages.

2.3.2 Automating procedure

The remote recovery procedure is used for repairing damaged filesystems on the Level3
farm. An image is created containing the script fixnode.all.remote.floppy, which is
directly executed at initilization time. Its description follows below.

configuring network

A set of IP addresses are reserved in the Level3 Ethernet network for use in the
recovery process. These are explicitly mentioned in the /etc/hosts file of the server;
e.g.

192.168.23.240 b0l3rec0.fnal.gov b0l3rec0
...



2.3 Recovering filesystems 11

To each image floppy is assigned a distinct address among this set, which it uses
for accessing the private network. The following set of instructions are sufficient for
configuring a network interface.

ripadr=192.168.22.240
ifconfig eth0 $ripadr
ifconfig eth0 broadcast 192.168.255.255
ifconfig eth0 netmask 255.255.0.0
route add -net 192.168.0.0

nfs-mounting

A remote node should be available as nfs server, with a directory containing the
necessary materials for implementing the recovery procedure.

Any available, failure-free Linux box in the farm can in principle be used as server
for the recovery process. The directory containing the recovery materials would have to
be nfs exported; this is done by creating/editing the file /etc/exports with contents
as in

/recovery 192.168.0.0/255.255.0.0(rw,no_root_squash)

(where the IP address/netmask pair is used to avoid access control problems for
nfs related daemons), and issuing the commands rpc.nfsd and rpc.mountd (or just
exportfs -a in case nfs is already up and running).

In the Level3 farm Gateway1 has been used for this purpose. Recovery materials
are located in /home/recovery directory (where the /home directory is permanently
nfs exported to the entire farm). Its remote sub-directory can be mounted as follows.

mkdir /mnt/extdisk
mount -t nfs 192.168.24.11:/home/recovery/remote /mnt/extdisk

write permissions are kept for log purposes only, and are otherwise not required.

execute remote script

Having now successfully mounted the remote recovery directory, a call to a main
script (fixnode.all.remote) is performed.

/mnt/extdisk/fixnode.all.remote

This will be expected to end with a reboot instruction. However, if that is not the
case, or if the remote script is not found at all, a call to a login command may be used
to allow direct console input.

/mnt/extdisk/bin/sulogin

This ends the image’s residing script, fixnode.all.remote.floppy.



12 2 RECOVERY

2.3.3 Installing filesystems

Filesystem recovery involves a number of steps. These are instructed in the main re-
mote recovery script (fixnode.all.remote). This script, which resides on the remote
recovery directory in Gateway1, reads in filesystem and node information from ac-
companying configuration files, recreates the specified filesystems by extracting their
standard contents from available tarballs also located remotely in the server; it ends
with a node rebooting instruction, after writing some log information as record of what
was done.

read in recovery information

Berore executing the procedure, information needs to be specified regarding the
filesystem to be recovered. This is done in a file (recover.config-remote) residing re-
motely (Gateway1). It may contain the name of the filesystem to be recreated, that of
the corresponding partition, as well as the name and origin of an appropriate tarball;
e.g.

hda7 cdf_260.tar 192.168.23.60 /cdf

re-create filesystem

The specified filesystem can be created using the mke2fs Linux program, destroying
the previously existing corrupted one.

If a full filesystem check (fsck) is desired each time the machine boots, this can be
forced by adjusting the maximal mounts count between two checks to unit; alterna-
tively, the maximal time between two checks can also be imposed. This is done using
tune2fs, and should be instructed at this stage, before mounting the filesystem.

expanding contents

The intended contents of the associated partition may be transferred to the node
by expanding an appropriate tarball, once both the remote tar file location and the
local partition are mounted on the image’s recovery system.

The procedure expects the filesytems’ tar files to be in a pre-defined location
(namely, the tarballs subdirectory); such tarball can be produced from an equiv-
alent healthy node as in the following example.

ssh root@b0l3260; cd /cdf
tar -cvpf /home/recovery/tarballs/cdf_260.tar ./*

updating IP address

In case the root filesystem happens to be the one recovered, node unique configu-
ration information, as its IP address, needs to be specified.



2.4 Installation through recovery 13

Firstly one extracts a node’s hardware identification, as the Ethernet card’s MAC
(Media Access Control) address; this is displayed in the ifconfig output following the
string HWaddr. Then the associated IP address is extracted from a tab-delimited list of
hostname, IP and MAC addresses. Such a list (ipmaclistL3-remote) is produced readily
by executing a simple script over the farm which extracts the addresses’ information
from ifconfig output. It should be updated whenever there are relevant hardware
modifications; including e.g. node swaping and Ethernet card replacement.

The thus found node’s IP address should be used to update the Ethernet port(s)
configuration settings; e.g., the file /etc/sysconfig/network-scripts/ifcfg-eth0

for the first Ethernet port.

logging

A record of the performed recovery is entered in a log file, stat.log. This should
contain information identifying the recovered node, filesystem, and date the procedure
was performed.

checking for floppy

The procedure should terminate with a reboot instruction for the node just recov-
ered. Before this instruction can be issued the recovery floppy needs to be removed
from the node’s drive, avoiding repetitive execution; the procedure halts and waits for
that to happen. Checks are regularly made for the presence of the floppy; additionally,
a temporary file with a suggestive name is touched on the server. Only once it is no
longer detected does the system proceed with the final reboot instruction.

further

The automated procedure may be interrupted at any stage (prior to the final reboot
instruction) simply by issuing a call to a login program, as the remote sulogin, and
be continued in a interactive fashion. This may be useful in cases when e.g. several
filesystems are to be installed, or for post-installation inspection purposes.

Updates to the recovery procedure are implemented remotely; thus, without the
need to e.g. modifying recovery images.

2.4 Installation through recovery

The Level3 farm recovery floppy can naturally be employed for the purpose of node
installation; this corresponds essentially to recoverying all filesystems. It has been used
in cases of new node, new hard drive, and new system installations.

partitioning

Disk (re-)partitioning may be necessary, and can be conveniently done using the
sfdisk Linux partition table manipulator. First, a file with the intended partition



14 2 RECOVERY

map should be created; this can be done by dumping the partitions of an existing,
identically partitioned device, as shown below.

sfdisk -d /dev/hda > hda.out

A file is produced this way with the appropriate format to serve as input to sfdisk

as follows.

/sbin/sfdisk /dev/hda < hda.out

The option − − force to sfdisk can be used, in which case one should be even
more certain of the requested actions.

In case the hard drive to be partitioned is not (cannot be) mounted in a local root
filesystem, thus rendering the sfdisk facility unavailable, one may use an uncustomized
version of the recovery floppy (or raw tomsrtbt) to perform a manual partitioning using
the standard fdisk manipulator.

multi-recovery

Once the disk has been re-partitioned as intended, the remote recovery floppy can
be used to complete the installation. The associated (extended) remote script then
performs the remaining, usual actions of filesystem creation (mke2fs), swap areas set-
ting up (mkswap), filesystem mounting and contents transfer from tarballs over the
network, MBR fixing, and reboot.

2.5 Generality

The recovery floppies execute whatever instructions are specified on a main remote
script; this is named fixnode.all.remote and resides on the directory /home/recovery/remote/

at the recovery nfs server (Gateway1).
The performed actions can be a simple call to a shell login program, filesystem

recovery or installation as specified in previous sections, or any other specified action
supported by the image’s system (or by the node’s system in a post recovery stage
using the chroot environment).

Other commonly useful, available commands include:

• fdisk, for disk paritioning

• chroot, for executing system commands on the node

• lilo, for MBR repair; e.g. hda1 being the root filesystem,
chroot /dev/hda1 /sbin/lilo



15

3 Installation

A full node system installation becomes necessary whenever one has a new or blank
hard drive, or an Operating System upgrade is to be performed.

Installation of a farm node can be achieved using an adapted recovery procedure.
Indeed, such an operation has been repeatedly performed in Level3 in the past. Such
a recovery floppy based installation may even be expedite in terms of time duration of
the procedure, on a single node basis.

The task nevertheless of installing a large farm system like Level3 can be a chal-
lenging one. When the time comes for a full farm upgrade, for example, alternative
ways may be worth examining. The so-called RedHat kickstart mechanism is explored
and customized to farm requirements. A related floppy-less procedure for full farm
installation is implemented.

3.1 Kickstart

Using individual Fermi RedHat Linux installation on multiple Level3 farm boxes re-
peatedly, as would be the case during OS upgrade, is time consuming and prone to
errors and disparities.

A mechanism for automating the installs of a large number of nodes, which addi-
tionally have similar configurations, is therefore desirable to say the least. The kickstart
[5] RedHat installation method provides in principle such a mechanism. Effectivelly,
this allows the scripting of the otherwise interactive installation process; the latter
is driven by a configuration file containing the answers to the questions that would
normally be asked during a manual installation.

Most features can be specified in this single file, including: network configuration,
distribution source and method, root password selection, boot loader, language, time-
zone, packages to be installed.

Additionally, the method offers the possibility of specifying a list of shell level
commands (i.e. scripts) to be executed just before (pre) or after (post) the normal
system installation. Use is made of these useful features for specific system and Level3
software installation.

As a general wisdom remark, it should be acknowledged the likelihood of sintax
change and availability of even broader functionality in coming RedHat releases.

3.1.1 Image

The installation images can be dowloaded from appropriate locations [4]. The image
contents can be accessed for customization purposes by transfering the kickstart image
file bootnet.img to a device such as a floppy disk as follows.

fdformat /dev/fd0
dd if=bootnet.img of=/dev/fd0H1440
mount -t msdos /dev/fd0 /mnt/floppy

ftp://linux.fnal.gov/linux/731a/i386/images/


16 3 INSTALLATION

ls /mnt/floppy/
boot.msg
general.msg
initrd.img
ldlinux.sys
param.msg
rescue.msg
snake.msg
syslinux.cfg
vmlinuz

vmlinuz is the Linux kernel. The other larger file (initrd.img) is the initial root
disk image (an ext2 filesystem compressed in a file, containing e.g. the collection of
loadable kernel modules).

The file syslinux.cfg is the configuration file for the the syslinux boot loader, and
the various *.msg files are message files which are normally displayed by the loader.
The config file is relevant only for floppy based installation, in which case it needs to
be customized; while the message files can be safely removed if floppy space is needed.

The process is guided by a kickstart configuration file (ks.cfg) which needs to be
added together with the files mentioned above.

3.1.2 Configuring system installation

The appropriate kickstart configuration, ks.cfg, file needs to be created. This is a
text file, containing a list of directives and keywords, and can be written from scratch.
Alternatively, one can use the kickstart configurator application, /usr/sbin/ksconfig.

In the current Fermi Linux release a config file is automatically generated by ana-
conda; this file contains the configuration selected in the performed installation (done
e.g. using a standard interactive installation), and is located at /root/anaconda-ks.cfg
on the installed node.

The Kickstart config file is formed of the following main sections:

1. System information

2. RedHat packages to be installed

3. pre and post installation shell commands

Keywords must be in order; comment lines start with #.
Excerpts of the Level3 configuration file are persented next with explanations.

Networking

The installation is done via the network. A static network configuration method
is used.



3.1 Kickstart 17

A set of IP addresses are reserved in the Level3 Ethernet network for use in
the installation process. These are explicitly mentioned in the /etc/hosts file
of the server; e.g.

192.168.23.250 b0l3ks0.fnal.gov b0l3ks0
...

All the required networking information needs to be specified following the net-
work keyword, in a single line.

network --bootproto static --device eth0
--ip 192.168.23.250 --hostname b0l3ks0
--netmask 255.255.0.0 --nameserver 192.168.24.11

The specified information is static, it will be used during the installation process,
as well as after the installation if not changed in the post configuration section.

The server from which to install and installation tree directory are specified with
the nfs keyword.

nfs --server 192.168.24.11 --dir /scratch/731a.install/i386

Partitioning

First, the disk partition table is initialized. The zerombr keyword clears the
master boot record, removing exisiting OS boot loader. clearpart removes ex-
isiting partitions, and initializes the disk label to the default.

zerombr yes
clearpart --all --initlabel

The new partitioning is specified via the part keyword. This allows to specify,
for each partition, the mount point, filesystem type, minimum size, disk where it
is to be created, among others. The following table is being used.

part /boot --fstype ext3 --size=50 --ondisk=hda --asprimary
part / --fstype ext3 --size=4096 --ondisk=hda --asprimary
part /tmp --fstype ext3 --size=2048 --ondisk=hda
part swap --size=2047 --ondisk=hda --asprimary
part /cdf --fstype ext3 --size=1 --grow --ondisk=hda

Other options

install; make a fresh system installation (rather than upgrade)



18 3 INSTALLATION

text; perform installation in text mode (default is graphical mode)

lang en US; set language for installation (English)

langsupport en US; set languages to install on the system

timezone –utc America/Chicago; set system timezone (see timeconfig)

bootloader; set boatloader and its location; defaults are GRUB (for LILO,
--useLilo) at mbr

keyboard us; set system keyboard type

mouse none; do not configure mouse for the installed system

skipx; do not configure X on the installed system

authconfig; set up the authentication options for the system (see authconfig)

rootpw –iscrypted XA8wIytED41RI; set the system’s root password, based
on previously derived encrypted form; encrypted password generated e.g. as
perl − e ′printf crypt(”olacomoestas”, ”XA”) . ”\n”′

reboot; do not ask for confirmation for rebooting after installation is com-
pleted

Package selection

The list of packages to be installed is initiated with the %packages command.
Packages can be specified by component or by individual package name. Com-
ponents are installed by giving their group name; individual packages may be
installed by giving the package name, i.e. their rpm file name, excluding the
version and platform information.

The available packages are listed in i386/RedHat/RPMS/ directory of the in-
stallation source. For example, the file

expect-5.32.2-67.i386.rpm

contains the rpm installation for the package named expect, characterized by
version (5.32.2; expect -v), release (67), architecture (i386).

A list of installed packages is produced during installation, located at /root/install.log.
One may take as example the package section of the anaconda automatically
generated configuration file. This can be modified, but care should be payed to
relative dependencies.

pre & post install

The pre and post installation sections (started with the %pre and %post inter-
preters) are placed at the end of the configuration file, and define shell commands
to be run just before and just after the system’s installation.



3.1 Kickstart 19

Pre-install commands are run in the installation’s image environment.

Post-install commands are run in the change root, system’s environment; com-
mands can still be specified to run outside of the chroot environment when the
option−−nochroot is used. The system’s image is accessible on /mnt/sysimage/
from the kickstart image (nochroot) environment. Different scripting languages
can be activated with the − − interpreter option. What is more, one can take
advantage of all utilities which have been installed on the newly built Linux
system.

Installation and settings of Level3 specific features can be instructed directly
using post (or pre ) installation scripting. An alternative is to use the post
install scripting features of workgroups.

nochroot environment

The installer image’s system is available in the nochroot environment. The latter
is accessible in pre, post−−nochroot (and after.rpms.nochroot.sh, when using
workgroups) interpreters.

The source i386 installation directory is mounted on

/mnt/source

and the installing system on

/mnt/sysimage

The workgroup materials, when these are used, are copied to

/mnt/sysimage/etc/$WORKGROUP/

where WORKGROUP=’cat /etc/workgroup’, e.g. CDFlevel3.

3.1.3 Post configuration

This is the section of the configuration file initiated by the %post directive, run in
chroot (system’s) environment.

Here one specifies extra actions to be performed after the normal system installation.
In particular, one can access the network, and mount an apppropriate directory.

mkdir /mnt/ksdir
mount 192.168.24.11:/home/recovery/kickstart /mnt/ksdir
echo "Kickstart installation performed on ‘/bin/date‘" > /mnt/ksdir/ks.post
...
umount /mnt/ksdir



20 3 INSTALLATION

The list of actions to be performed may include the following.

Update fstab:

echo "b0l3serv:/home /home nfs \
auto,rw,rsize=8192,wsize=8192,soft" >> /etc/fstab

Modify/create general system’s configuration files:

/etc/hosts
/etc/ntp.conf
/etc/ssh/ssh_config
/etc/ntp/step-tickers
/etc/sysconfig/static-routes
/etc/sysconfig/network
/etc/sysconfig/network-scripts/ifcfg-eth#

Perform runtime services settings and others:

/sbin/chkconfig --level 35 anacron on
/sbin/chkconfig --level 35 gpm on
/sbin/chkconfig --level 35 network on
/sbin/chkconfig --level 35 sshd on
/sbin/chkconfig --level 35 netfs on
/sbin/chkconfig --level 35 atd on
/sbin/chkconfig --level 35 keytable on
/sbin/chkconfig --level 35 portmap on
/sbin/chkconfig --level 35 syslog on
/sbin/chkconfig --level 35 nfslock on
/sbin/chkconfig --level 35 ypbind on
/sbin/chkconfig --level 35 crond on
/sbin/chkconfig --level 35 kudzu on
/sbin/chkconfig --level 35 random on
/sbin/chkconfig --level 35 sendmail off
/sbin/chkconfig --level 35 apmd off

/sbin/hwclock --utc --systohc
/usr/bin/updatedb

3.1.4 CDFlevel3 workgroup

Fermi Workgroups [6] have been designed to provide extra installation customization
capabilities. In practice, this further extends (and facilitates) the packages and post
installation procedure, automatically running a custom shell script at the end of the
install, and providing a storage area accessible by the shell script. In particular, this
circumvents the need to mount an extra nfs location with Level3 specific materials, as
these can be placed in designed locations in the main source location for the installation.



3.1 Kickstart 21

An appropriate workgroup, CDFlevel3 [6], has been defined, 2 and is located in
the directory (at the source installation tree location)

i386/Fermi/workgroups/CDFlevel3

During installation this gets copied with preserved tree structure to /etc/CDFlevel3
(in general to /etc/‘cat /etc/workgroup‘), as instructed in the file 3

i386/Fermi/common/scripts/post.sh

with preserved tree structure, thus becoming available to the customization script. It
contains the following base directories.

RPMS

Contains workgroup specific rpms to be last installed (with the rpm option −−
force), before customization script is executed.

configfiles

This is a storage area; it may hold farm specific configuration files.

scripts

This is the location for customization scripts. Scripts located in this area are
executed in case their names match the following, and have execution permissions:

• before.rpms.sh

• after.rpms.sh

• after.rpms.nochroot.sh

The first two are executed in a chroot (system’s) environment; the last one is run
in the installing system’s context, the install medium location being available
in $SOURCE, and the new install area in $CHROOT. In these bash scripts full
paths should be specified.

comps

This file defines the groups and rpm packages to be installed during the RedHat
packages installation time.

It should be merged with other comps files (from other workgroups) and the
RedHat defined portion, in the following file.

2The Level3 workgroup was initially put together for farm installation purposes by A.Korn.
3This script normally is executed automatically. In versions 731x, there was a bug in the installer

which prevented this to occur during kickstart; it thus required (as suggested to me by T. Dawson)
an explicit call to the script in the post section of the kickstart configuration file:

%post - -nochroot
sh /mnt/source/Fermi/common/scripts/post.sh



22 3 INSTALLATION

i386/RedHat/base/comps

One may have the following simplest comps definition of the workgroup

0 --hide CDFlevel3 {
CDFlevel3-tag
expect
upsupdbootstrap

}

The UPS/UPD installation is completed by placing the upsupdbootstrap− local ∗
.rpm (for installation in /local) from RedHat/RPMS/ in the workgroup’s RPMS/
directory.

Farm specific configuration files, as well as necessary tarballs, are placed in configfiles/,
to be handled by a customization file named after.rpms.sh located in scripts/; this
would substitute the post installation section of the ks.cfg kickstart configuration file.

For RedHat release 8.0 or higher, the comps file, actually comps.xml, is written
in XML format, for increased flexibility.

The workgroups feature is not necessary for Level3 installation, as alternative ways
have been designed; nevertheless, it has been set up, fully tested, and is made available,
with this section serving as guide, as it may be usefull for additional and administration
convenience.

3.2 Installation disk

The kickstart installation may be performed by a floppy disk. This must contain a
Linux kernel image and appropriate configuration files; specifically the following files
are required:

vmlinuz
initrd.img
ldlinux.sys
syslinux.cfg
ks.cfg

Files syslinux.cfg and ks.cfg need to be created or customized. The latter has
been described in detail in previous sections.

The floppy uses the syslinux boot loader; syslinux.cfg is its configuration file,
and contains the following:

default ks : assign kickstart as default boot image
prompt 0 : do not bring up prompt at boot, or
timeout 60 : decrease delay for default image to be booted
label ks : image label (arbitrary, as long as consistent with default)



3.3 Hard drive based installation 23

kernel vmlinuz : specify name of file containing the kernel

append : add kernel parameters, including

ks=floppy : find ks.cfg on the floppy (drive /dev/fd0)

initrd=initrd.img : name of initial root disk image file

lang=

text : keyword text enables text-based install

ksdevice=eth0 use this network device to connect to the network

devfs=nomount ramdisk size=8192

The mentioned, customized files should be transferred to a floppy disk. The in-
stallation is performed simply by booting the node with the so produced kickstart
installation floppy.

During the installation process various consoles are accessible with information of
what is taking place:

Alt-F1 - installation dialog

Alt-F2 - shell prompt

Alt-F3 - install log (messages from install program)

Alt-F4 - system log (messages from kernel, etc.)

Alt-F5 - other messages

further

In another implementation, for additional functionality, the default image directives
in syslinux.cfg may be left included; these can be specified at boot prompt, in which
case this should not be disabled, and an appropriate delay (e.g., timeout 60 for 6
seconds) should be specified.

A custom boot message screen may be displayed, by adding the keyword display

ksl3.msg to the syslinux.cfg , where ksl3.msg is a message file. The contents of
this file may be marked up, such as by adding colored words (e.g. ˆO09LEVEL3ˆO02 is
displayed in blue).

If the line F1 ksl3.msg is added, the message is shown when F1 is pressed at boot
time; this allows for displaying several messages, containing for example instructions
associated with different kernels or configurations available.

The floppy disk kickstart procedure is most relevant for installing nodes which do
not boot up properly, as the installation does not make use of a possibly pre-existing
system.

3.3 Hard drive based installation

For nodes which have a running operating system, as it is the case during upgrade, a
floppyless, hard drive based installation procedure has been set. This is most conve-



24 3 INSTALLATION

nient, as a node or a pre-defined list of nodes can be installed by executing a single
script, which can even be done from a remote location, e.g. from one’s office!

The strategy here is to use the hard drive has the kickstart installation media;
it involves the following steps: (i) transfer the necessary images and corresponding
configuration files to the hard drive to be installed; (ii) configure the current node’s
boot loader to use the kickstart image; (iii) reboot the node. After this, if all went
well, the nodes come up with a brand new installation.

Currently, LILO is used in the farm; accordingly, its configuration file, lilo.conf,
is modified by adding the kickstart image specifications.

Assume the node to be installed has the following disk structure: the root filesystem
is hda1; it has an extra partition, hda6 mounted on /usr; the current directory contains
the kickstart image installation files, together with a proper kickstart configuration file
(described in previous sections).

mkdir /usr/boot

ipadr=‘/sbin/ifconfig eth0 | grep inet \

| cut -f 12 -d " " | sed -e s/addr:/""/‘

hostn=‘hostname -s‘

todo=‘echo $ipadr --hostname $hostn‘

sed -e s/"192.168.23.250"/"$todo"/ ks.cfg-template > /usr/boot/ks.cfg

cp -f initrd.img /usr/boot/initrd-install.img

cp -f vmlinuz /usr/boot/vmlinuz-install

cat <<EOF >>/etc/lilo.conf

image=/usr/boot/vmlinuz-install

label=install

initrd=/usr/boot/initrd-install.img

append="ks=hd:hda6/boot/ks.cfg"

read-only

root=/dev/hda1

EOF

/sbin/lilo

/sbin/lilo -R install

/sbin/reboot

3.4 Installation through recovery

Some kinds of nodes on the farm require specific installation care. This is the case for
the Converter and Output nodes. These require extra or modified drivers for additional
hardware (e.g., ATM card in Converters, multi-port Ethernet tulip card in both). Two
possibilities are foreseen for installing these: (i) produce appropriate RPMs, or (ii)
install the filesystem contents from an already properly installed, similar node. Given
that these are considerably fewer than Processor nodes, and the possibly delicate task
of creating proper rpm installation files, the most straightforward way is the latter.



3.4 Installation through recovery 25

A filesystem recovery based installation can be implemented making use as well of
the linux kernel which comes with the Fermi installation. Namely, booting the Linux
kernel in its rescue mode

boot: linux rescue

one is re-directed to a shell environment, allowing to perform general rescue op-
erations. These may include disk inspection, partitioning (e.g. sfdisk is available),
filesystem creation (e.g. ext3 feature are available), mouting local and remote filesys-
tems, and so on. Additionally, the i386 source directory on the installation server is
automatically mounted.

The following procedure was therefore implemented and tested.

source directory

Add to the installation source on the server the directory

i386/LEVEL3/

this becomes accessible in the recovery system’s image environment under

/mnt/source/LEVEL3/

filesystem contents

Place there all source filesystem contents, e.g. in

i386/LEVEL3/tarballs/

install script

Create a recovery-like script, placing it in the i386/LEVEL3/ recovery-based in-
stallation directory.

i386/LEVEL3/scripts/

This may include actions as the following:

- mke2fs -j /dev/$fsname1 : create ext3 filesystems

- mkswap /dev/$fsswap : set up swap areas

- mkdir /mnt/$fsname1; mount -t ext3 /dev/$fsname1 /mnt/$fsname1 : mount
filesystems

- cd /mnt/$fsname1; tar xvf $tardir/$fstar1



26 3 INSTALLATION

- chroot /mnt/$rootfs /sbin/lilo : configure boot loader

- echo "Node installed on ‘date‘ > /mnt/$fsname1/l3install.log " :
write installation record

Once such a procedure is set up this way, the installation may be executed by
performing the following steps: (i) (re-)partition the target disk, if necessary; (ii)
reboot the node using the installation image in rescue mode (this can be done using
a floppy disk, or an hard drive based installation, in a similar fashion as described in
previous sections); (iii) execute the installation script previously set up,

/mnt/source/LEVEL3/scripts/nodeinstall.sh

Exiting the rescue shell will reboot the node just installed.

Note that the filesystem table should include explicit partitions locations rather
than label’s which without further do won’t be defined.



Acknowledgments

I wish to thank T. Kim, A. Korn, S. Tether for discussions; G. Gómez-Ceballos,
I. Kravchenko for also dedicating attentive care to the system and level3 code expertise;
the full Level3 team; and finally the online shift crew for permanently using the system.

The Level3 work here described was supported in part by the Science and Technol-
ogy Foundation, Portugal.

References

[1] N. Leonardo for the EVB/L3 team, Event Builder and Level 3 Manual for Experts,
CDF Note 6138, http://www-cdfonline.fnal.gov/evbl3shift/evbl3pager.html.

[2] N. Leonardo for the EVB/L3 team, EVB/L3 experts online page,
http://www-cdfonline.fnal.gov/evbl3shift/evbl3pager.html
Recovery, http://www-cdfonline.fnal.gov/evbl3shift/pager/recovery/
Node statistics, http://www-cdfonline.fnal.gov/evbl3shift/pager/recovery/nodelist.html

[3] T. Oehser, The most GNU/Linux on 1 floppy disk, http://www.toms.net/rb/

[4] The Femi Linux page, http://www-oss.fnal.gov/projects/fermilinux/
v7.3.1 distribution, http://www-oss.fnal.gov/projects/fermilinux/731/home.html
v7.3.1 ftp, ftp://linux.fnal.gov/linux/731a/
v7.3.1 images, ftp://linux.fnal.gov/linux/731a/i386/images/

[5] The Official Red Hat Linux Customization Guide,
http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/custom-
guide/index.html

[6] Fermi Workgroups,
http://www-oss.fnal.gov/projects/fermilinux/common/workgroups.maintainers.html
A. Korn, CDFlevel3 workgroup,
ftp://linux.fnal.gov/linux/731/i386/Fermi/workgroups/CDFlevel3/
T. Dawson, Maintaining a workgroup,
http://home.fnal.gov/d̃awson/linux/custom/maintain.workgroup.html

[7] UPS, UPD and UPP page at Fermilab,
http://www.fnal.gov/docs/products/ups/

UPD and UPD distribution server,
http://kits.fnal.gov/

Main ftp server containing available product releases,
ftp://ftp.fnal.gov/products/

http://www-cdf.fnal.gov/htbin/notes/cdfnoteSelGet?number=6138
http://www-cdfonline.fnal.gov/evbl3shift/evbl3pager.html
http://www-cdfonline.fnal.gov/evbl3shift/evbl3pager.html
http://www-cdfonline.fnal.gov/evbl3shift/pager/recovery/
http://www-cdfonline.fnal.gov/evbl3shift/pager/recovery/nodelist.html
 http://www.toms.net/rb/
http://www-oss.fnal.gov/projects/fermilinux/
http://www-oss.fnal.gov/projects/fermilinux/731/home.html
ftp://linux.fnal.gov/linux/731a/
ftp://linux.fnal.gov/linux/731a/i386/images/
http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/custom-guide/index.html
http://www.redhat.com/docs/manuals/linux/RHL-7.3-Manual/custom-guide/index.html
http://www-oss.fnal.gov/projects/fermilinux/common/workgroups.maintainers.html
ftp://linux.fnal.gov/linux/731/i386/Fermi/workgroups/CDFlevel3/
http://home.fnal.gov/~dawson/linux/custom/maintain.workgroup.html
http://www.fnal.gov/docs/products/ups/
http://kits.fnal.gov/
ftp://ftp.fnal.gov/products/


28A RECOVERY IMAGE CONFIGURATION AND PROCEDURE IMPLEMENTATION

A Recovery image configuration and procedure im-

plementation

A.1 Configuration files

inittab

::sysinit:/etc/rc.S
::ctrlaltdel:/bin/reboot
::shutdown:/etc/rc.0

rc.S

#!/bin/sh
PATH=/bin
BT=1
#Read from image
mount -o remount /
mount -a
mount -o ro /dev/fd0u1722 /fl
. /fl/settings.s
update &
cp /fl/rc.* /fl/*.s /bin
gzip -d /bin/*.gz
. /bin/rc.custom
umount /fl
#Execute local script
/fixnode.all.remote.floppy

Note: When a PC is booted the BIOS runs its power-on-self-test (post) and then looks for
more boot information in the boot sector of the available device: (i) typically in the Master Boot
Record (MBR) of the hard drive, (ii) in floppy if present (and booting device order set accordingly
in BIOS). The Linux kernel then loads init, the general process dispatcher, using /etc/inittab as
its configuration file, where run levels are defined and the default is specified. The initialisation table
consists of records of the format: id:runlevels:action:process. Usually, the first script run by
init is rc.S, then it drops down and runs the default run level (usually 2).

In the present recovery implementation the procedure is performed just before run levels are
executed.

A.2 Include a new binary

Below is shown how to include a new binary file as part of a customized image. The
case of sulogin (single user login) program is provided in detail as an example.



A.3 Create a recovery floppy 29

Download source code; e.g. search as in:
http://rpmfind.net/linux/rpm2html/search.php?query=SysVinit

Unpack
> rpm -ihv SysVinit-2.78-5.src.rpm

Modify code; in sulogin.c comment out getpasswd() call
/*
while(1) {

if ((p = getpasswd()) == NULL) break;
if (pwd->pw_passwd[0] == 0 ||
strcmp(crypt(p, pwd->pw_passwd), pwd->pw_passwd) == 0)

*/
sushell(pwd);

/*
printf("Login incorrect.\\n");

}
*/

Remove other un-necessary features; e.g. PCMCIA related

Compile and enforce static link
> cc -Wall -O2 -D_GNU_SOURCE -c -o sulogin.o sulogin.c
> cc -s -static -o sulogin sulogin.o -lcrypt

Transfer executable to unpacked image directory
> cp sulogin tomsrtbt-[version]/tomsrtbt-[version].unpacked/2/sbin/

Call program; impose sulogin at specified run level
> vi tomsrtbt-[version].unpacked/2/etc/inittab

id:4:initdefault:
si:S:sysinit:/etc/rc.S
rc:5:wait:/etc/rc.M
ca::ctrlaltdel:/bin/shutdown -t5 -rfn now "CtlAltDel"
l0:0:wait:/etc/rc.0
l6:6:wait:/etc/rc.6
~~:S:wait:/sbin/sulogin
c1:5:wait:/sbin/sulogin

A.3 Create a recovery floppy

Go to Tom’s Root Boot Linux page:
http://www.toms.net/rb/

Download the software from one of the listed sites, e.g.
ftp://www.tux.org/pub/distributions/tinylinux/tomsrtbt/tomsrtbt-[version].tar.gz

Expand the .tar.gz archive:
> tar xvzf tomsrtbt-[version].tar.gz



30A RECOVERY IMAGE CONFIGURATION AND PROCEDURE IMPLEMENTATION

A) Create raw floppy:
> cd tomsrtbt-[version]
> ./install

B) Create a customized floppy (e.g., include myscript):
> cd tomsrtbt-[version]
> ./unpack.s tomsrtbt.raw
> cd tomsrtbt-[version].unpacked/
> cp /mylocation/myscript 2/
> chmod +x 2/myscript
> ./buildit.s
> cd tomsrtbt-[version+1]
> ./install

A.4 Remote recovery procedure

The common procedure for restoring a filesystem on a Level3 node involve the following
steps.

1. Go to remote recovery directory; Gateway> cd /home/recovery/remote

2. Specify filesystem information: check/edit file recover.config-remote

3. Check for existence of corresponding tar file in tarballs directory; otherwise
create it

4. For Output and Converter nodes, re-seat Ethernet cable (A) on on-board Ether-
net port

5. Check/edit recovery script if needed, fixnode.all.remote

6. Execute recovery script on broken node; insert remote recovery disk on floppy
drive of broken node and hit reset; this will execute locally the remote script
named fixnode.all.remote located on remote directory

7. Remove floppy when done; wait ∼ 4min or check stat.log; the procedure will
wait until the floppy has been removed from the node’s drive; for Output or
Converter nodes, the Ethernet cable should be re-seat into its original port

8. Check that node is up and well, starting with ping, ssh, df; execute specific
actions known to be required by certain classes of nodes

9. Distribute relay/level3 code in case the relevant filesystem (/cdf) has been re-
stored (see [2] for instructions)

Details and updates are found in the recovery page in [2].



A.5 Filesystem recovery scripts 31

A.5 Filesystem recovery scripts

File: fixnode.all.remote
Description: main recovery script

#!/bin/sh

#Get MAC address of current node
mac=‘/usr/bin/ifconfig eth0 | grep HWaddr | cut -d " " -f 11‘
echo "The MAC address found is $mac"

#Extract node name + ip from associated $mac in ipmaclistL3-remote table
name=‘/usr/bin/grep $mac /mnt/extdisk/remote/ipmaclistL3-remote|cut -f 1 -d " "‘
ipadr=‘/usr/bin/grep $mac /mnt/extdisk/remote/ipmaclistL3-remote|cut -f 2 -d " "‘
echo "The node name found is $name with ip address $ipadr"

#Read recovery configuration: select filesystem
fsname=‘grep -v "#" /mnt/extdisk/remote/recover.config-remote|cut -f 1‘
fstar=‘grep -v "#" /mnt/extdisk/remote/recover.config-remote|cut -f 2‘
fsip=‘grep -v "#" /mnt/extdisk/remote/recover.config-remote|cut -f 3‘
fsid=‘grep -v "#" /mnt/extdisk/remote/recover.config-remote|cut -f 4‘

#Recreating filesystem on /dev/$fsname
/usr/bin/mke2fs /dev/$fsname
#Setting max mount count to 1
/usr/bin/tune2fs -c 1 /dev/$fsname

#Mount /dev/$fsname
mkdir /mnt/$fsname
mount -t ext2 /dev/$fsname /mnt/$fsname

#Expand tarball
cd /mnt/$fsname
tar xvf /mnt/extdisk/tarballs/$fstar

#Assign correct ip-address to eth0: $fsip->$ipadr
if [ $fsid = "/" ]
then
cd /mnt/$fsname/etc/sysconfig/network-scripts
sed -e s/$fsip/$ipadr/ ifcfg-eth0 > tempo
mv tempo ifcfg-eth0
fi

#Add log info to b0l3serv:/home/recovery/stat.log
echo "Rebooted node $name; recovered $fsname aka $fsid; \

on " ‘/usr/bin/date‘ >> /mnt/extdisk/stat.log

#Wait until recovery disk is removed
mkdir /mnt/floppy
mount -t minix /dev/fd0u1722 /mnt/floppy



32A RECOVERY IMAGE CONFIGURATION AND PROCEDURE IMPLEMENTATION

flp=‘df | grep floppy | wc | cut -f 1‘
umount /mnt/floppy
while [ $flp -gt 0 ]; do
sleep 5
mount -t minix /dev/fd0u1722 /mnt/floppy
flp=‘df | grep floppy | wc | cut -f 1‘
echo "Still waiting for floppy to be removed... $flp : not zero"
umount /mnt/floppy
touch /mnt/extdisk/remove_floppy_to_reboot_$name

done
rm /mnt/extdisk/remove_floppy_to_reboot_$name

#Reboot the node
sleep 2
reboot

Auxiliary files
The remote recovery directory is Gateway1:/home/recovery/remote/. A descrip-

tion of the main remote files follows.

• recover.config-remote. This file contains a map which specifies which filesys-
tem is to be recovered, and tarball information; it is read by the main script;
needs to be edited before it is executed (see header for editing instructions).

Format:

#fs tarball taredFromIP partition
hda1 rootfs_274.tar 192.168.23.74 /
#hda6 usr_273.tar 192.168.23.73 /usr
#hda7 cdf_260.tar 192.168.23.60 /cdf

• ipmaclistL3-remote. This file contains a list of names, IP and MAC addresses
of each single node; it is read by the main script; ought to always be up-to-date.

Format:

b0l3c01 192.168.21.1 00:00:D1:1C:6D:CF
...
b0l3001 192.168.22.1 00:E0:81:04:3E:F7
...
b0l3u01 192.168.26.1 00:D0:B7:A7:95:9E
...

This needs to be updated whenever an hardware alteration takes place in the
farm, including: installation of a new node; node swapping; Ethernet card re-
placement or exchange. Output and Converter nodes use a multi-port Ethernet
card which is not supported by the system on the floppy; therefore one needs to



A.5 Filesystem recovery scripts 33

use instead the non-default (motherboard embedded) port, and it is the corre-
sponding MAC addresses that are necessary. An updated version of the file may
be readily obtained by executing a simple script as below in each node.

#!/bin/bash
echo "usage: getmacip_node.sh"
mac=‘/sbin/ifconfig eth0 | grep HWaddr | cut -f 11 -d " "‘
ip=‘/sbin/ifconfig eth0 | grep inet | cut -f 12 -d " " | sed -e s/addr:/""/‘
echo "‘hostname‘ $ip $mac"
exit

For example, for processor nodes,

ssh root@b0l3pcom1
touch /home/l3proxy/recovery/newlist.txt
expect /root/scripts/allProc.exp
/home/recovery/remote/scripts/getmac_node.sh \

>> /home/l3proxy/recovery/newlist.txt

and similarly for Converter and Output nodes after Etherent cable re-seating.

• stat.log. This is the general recovery log file; it is automatically edited each
time the procedure is used, with information about the node and filesystems just
recovered.

Format:

Rebooted node b0l3203; recovered hda6 aka /; on Tue Sep 30 14:54:11 2003

• tarballs/. This directory should contain (at the time of execution) the appro-
priate tar file with the filesystem contents to be installed; correct description of
these files should appear on the file ”recover.config-remote”; appropriate tarballs
may be available on: Gateway2:tarballs/tarballs.reservoir

• bin/. This directory contains binaries to be executed by the recovery system;
e.g. sulogin.

• scripts/. This directory contains various scripts pertaining to the procedure.

• store/. This is a backup directory; prior to modifying any of the files one ought
to be sure that a backup version is saved.



34 B INSTALL CONFIGURATION AND IMPLEMENTATION

B Install configuration and implementation

B.1 Configuration files

File: ks.cfg
Description: main kickstart configuration file

nfs --server 192.168.24.11 --dir /scratch/731a.install/i386
install
lang en_US
langsupport en_US
keyboard us
mouse none
text
skipx
network --bootproto static --device eth0 --ip 192.168.23.250 \

--netmask 255.255.0.0 --gateway 192.168.24.0 --nameserver 192.168.24.11
xconfig --card "ATI Mach64" --videoram 4096 --hsync 31.5 --vsync 50-61 \

--resolution 1024x768 --depth 16 --defaultdesktop gnome
rootpw --iscrypted XA8wIytED41RI;
firewall --disabled
authconfig --enableshadow --enablemd5 --enablenis \

--nisdomain b0l3p --nisserver b0l3serv.fnal.gov
timezone --utc America/Chicago
bootloader
zerombr yes
clearpart --all --initlabel
part /boot --fstype ext3 --size=50 --ondisk=hda --asprimary
part / --fstype ext3 --size=4096 --ondisk=hda --asprimary
part /tmp --fstype ext3 --size=2048 --ondisk=hda
part swap --size=2047 --ondisk=hda --asprimary
part /cdf --fstype ext3 --size=1 --grow --ondisk=hda
reboot

%packages
@ GNOME
@ Network Support
@ Authoring and Publishing
@ Software Development
@ Kernel Development
@ Fermi Kerberos
@ Openssh Server
@ FermiStandAlone
ghostscript-fonts
balsa
mozilla-chat
compat-libstdc++
gaim
Xaw3d-devel
glade



B.1 Configuration files 35

libesmtp
ddd
xmms-gnome
libesmtp-devel
libgtop-devel
SDL
gdk-pixbuf-devel
pan
ORBit-devel
doxygen
glib2-devel
kernel-smp
lesstif-devel
libghttp-devel
pygtk-devel
tetex-xdvi
smpeg
gnome-core-devel
bonobo-devel
libcap-devel
gnome-vfs-devel
rsync
SDL_net
control-center-devel
pango-devel
openssh-askpass-gnome
GConf-devel
bonobo-conf-devel
transfig
w3c-libwww-devel
eel-devel
libglade2-devel
xfig
audiofile-devel
xpdf
licq
imlib-devel
gnome-libs-devel
unzip
usbview
gq
gv
gtk+-devel
librsvg-devel
gcc-objc
gal-devel
python2-devel
SDL_image
acroread-plugin
magicdev
w3c-libwww
libpcap



36 B INSTALL CONFIGURATION AND IMPLEMENTATION

exmh
fam-devel
freetype-devel
ghostscript
zz_libg2c.a_change
memprof
XFree86-devel
Guppi-devel
lesstif
libglade-devel
xawtv
openssh-askpass
redhat-config-network
ical
guile-devel
libole2-devel
licq-gnome
oaf-devel
nedit
gnome-media
SDL_mixer
librep-devel
gnome-print-devel
atk-devel
libmng-devel
libungif-devel
libxml-devel
acroread
glib-devel
gtk2-devel
netpbm-devel
galeon
ucd-snmp
xmms
emacs
expect

%post

mkdir /mnt/ksdir
mount 192.168.24.11:/home/recovery/kickstart /mnt/ksdir

hostn=‘cat /etc/sysconfig/network | grep HOSTNAME | sed -e s/HOSTNAME=//‘
touch ’/mnt/ksdir/$hostn.kslock’
nodelog=’/mnt/ksdir/$hostn.ks.log’
touch $nodelog
echo "Kickstart hd-installation $hostn performed on ‘/bin/date‘" \

>> /mnt/ksdir/ks.log
echo "Starting l3 ks hd install of $hostn on ‘/bin/date‘" >> $nodelog

echo "‘/bin/date‘ : copying config files" >> $nodelog



B.1 Configuration files 37

echo "b0l3serv:/home /home nfs \
auto,rw,rsize=8192,wsize=8192,soft" >> /etc/fstab

cp -f /mnt/ksdir/etc/ks-hosts /etc/hosts
cp -f /mnt/ksdir/etc/ks-static-routes /etc/sysconfig/static-routes
cp -f /mnt/ksdir/etc/ks-ntp.conf /etc/ntp.conf
cp -f /mnt/ksdir/etc/ks-ssh_config /etc/ssh/ssh_config
cp -f /mnt/ksdir/etc/ks-sshd_config /etc/ssh/sshd_config
cp -f /mnt/ksdir/etc/ks-step-tickers /etc/ntp/step-tickers

echo "‘/bin/date‘ : copying cdf.tar" >> $nodelog
if [ -d /cdf ]; then
cd /cdf
tar xfvz /mnt/ksdir/cdf/cdf_ks.tgz
cd /
ln -s /cdf/log log
cd /cdf/level3/filter/control
tar xfvz /mnt/ksdir/cdf/ks-control-vtest.tgz
cd /cdf/level3/filter/relay
tar xfvz /mnt/ksdir/cdf/ks-relay-v1_4_7.tgz
fi

echo "‘/bin/date‘ : copying local.tar" >> $nodelog
cd /
tar xpvfz /mnt/ksdir/cdf/ks-local.tgz
#rpm -i --force /mnt/ksdir/rpms/upsupdbootstrap-2.2-8.i386.rpm
#rpm -i --force /mnt/ksdir/rpms/upsupdbootstrap-local-2.2-2.i386.rpm

echo "‘/bin/date‘ : copying ups databases" >> $nodelog
if [ -d /local ]; then
cd /usr/local/etc
ln -s /local/ups/etc/setups.sh .
ln -s /local/ups/etc/setups.csh .
fi

#runtime services settings
/sbin/chkconfig --level 35 anacron on
/sbin/chkconfig --level 35 gpm on
/sbin/chkconfig --level 35 network on
/sbin/chkconfig --level 35 sshd on
/sbin/chkconfig --level 35 netfs on
/sbin/chkconfig --level 35 atd on
/sbin/chkconfig --level 35 keytable on
/sbin/chkconfig --level 35 portmap on
/sbin/chkconfig --level 35 syslog on
/sbin/chkconfig --level 35 nfslock on
/sbin/chkconfig --level 35 ypbind on
/sbin/chkconfig --level 35 crond on
/sbin/chkconfig --level 35 kudzu on
/sbin/chkconfig --level 35 random on
/sbin/chkconfig --level 35 sendmail off
/sbin/chkconfig --level 35 apmd off
/sbin/hwclock --utc --systohc



38 B INSTALL CONFIGURATION AND IMPLEMENTATION

/usr/bin/updatedb

echo "‘/bin/date‘ : done" >> $nodelog
echo " Ending installation of ‘hostname -s‘ on ‘/bin/date‘" \

>> /mnt/ksdir/ks.log
echo "...." >> /mnt/ksdir/ks.log

touch /root/l3install.log
cat <<EOF >> /root/l3install.log
Level3 Farm Installation Procedure
Author: Nuno Leonardo

Node: $hostn
Method: hard-drive kickstart
Date: ‘/bin/date‘

Details:
EOF

cat $nodelog >> /root/l3install.log
rm ’/mnt/ksdir/$hostn.kslock’
umount /mnt/ksdir
exit

File: syslinux.cfg
Description: floppy boot loader configuration

default ks
prompt 1
timeout 10
display ksl3.msg
F1 ksl3.msg
F2 boot.msg
F3 general.msg
F4 rescue.msg
label ks
kernel vmlinuz
append ks=floppy ksdevice=eth0 initrd=initrd.img lang= text \

devfs=nomount ramdisk_size=8192
label linux
kernel vmlinuz
append initrd=initrd.img lang= devfs=nomount ramdisk_size=8192 vga=788

label text
kernel vmlinuz
append initrd=initrd.img lang= text devfs=nomount ramdisk_size=8192

label expert
kernel vmlinuz
append expert initrd=initrd.img lang= devfs=nomount ramdisk_size=8192

label nofb



B.2 Installation scripts 39

kernel vmlinuz
append initrd=initrd.img lang= devfs=nomount nofb ramdisk_size=8192

label lowres
kernel vmlinuz
append initrd=initrd.img lang= lowres devfs=nomount ramdisk_size=8192

File: ksl3.msg
Description: marked up message to be displayed at boot time (instructions may be

added).

^L

^O09Welcome to the ^O0cLevel3 Farm^O09 kickstart installation!^O07

LL EEEEEE V V EEEEEE LL 333333
LL EE V V EE LL 3
LL EEEE V V EEEE LL 3333
LL EE V V EE LL 3
LLLLLL EEEEEE V EEEEEE LLLLLL 333333

^O05K I C K S T A R T ^O07

Procedure by
^O0fNuno T. Leonardo^O07

Massachusetts Institute of Technology

^O05[F1-Level3] [F2-Main] [F3-General] [F4-Rescue]^O07

B.2 Installation scripts

File: ks.harddrive.install.sh
Description: sets node for hard drive based kickstart installation

#!/bin/bash
hostn=‘hostname -s‘;
if [ $hostn = "b0l3pcom1" ] || [ $hostn = "b0l3pcom2" ]; then
echo "ATTENTION: action forbidden in $hostn... goodbye !";
exit 1;

else
echo "Node $hostn will be prepared for kickstart HD installation !"

fi



40 B INSTALL CONFIGURATION AND IMPLEMENTATION

ipadr=‘/sbin/ifconfig eth0 | grep inet | cut -f 12 -d " " | sed -e s/addr:/""/‘
todo=‘echo $ipadr --hostname $hostn‘
rm -f /boot/ks.cfg
sed -e s/"192.168.23.250"/"$todo"/ /home/leonardo/l3kickstart/ks-hd.cfg > /boot/ks.cfg

cp -f /home/leonardo/l3kickstart/initrd.img /boot/initrd-install.img
cp -f /home/leonardo/l3kickstart/vmlinuz /boot/vmlinuz-install

if [ -e /etc/lilo.conf-OLD ]; then
echo "lilo.conf will not be modified";
elif [ -e /etc/lilo.conf ]; then
cp -f /etc/lilo.conf /etc/lilo.conf-OLD;
cat <<EOF >>/etc/lilo.conf

#kickstart install image
image=/boot/vmlinuz-install

label=install
initrd=/boot/initrd-install.img
append="ks=hd:hda1/ks.cfg"
read-only
root=/dev/hda2

EOF
else
echo "/etc/lilo.conf does not exist \!"
exit;
fi

/sbin/lilo
/sbin/lilo -R install
/sbin/shutdown -r now
exit

File: makefloppy.ks.sh
Description: produces node-customized kickstart installation floppy

#!/bin/sh
echo "Customized level3 kickstart floppy creation"
echo -n "Enter level3 node name [b0l3ks0]: "
read hostn
echo -n "Complete node IP address 192.168. [23.250]: "
read ipaddr

echo "Customizing configuration..."
if [ ! $hostn ]; then
hostn=’b0l3ks0’;

fi
if [ ! $ipaddr ]; then
ipaddr=’192.168.23.250’;



B.2 Installation scripts 41

fi
ipaddr="192.168.$ipaddr";

echo " Node: $hostn IP: $ipaddr"
sed -e s/"192.168.23.250"/$ipaddr/ ks.cfg-template > ks.cfg-template1
sed -e s/b0l3ks0/$hostn/ ks.cfg-template1 > ks.cfg

echo -n "Insert floppy disk...."
read something

echo -n "Do you want to format floppy? "
read fmat
if [ "$fmat" = "yes" ]; then
echo "Start formatting disk...";
fdformat /dev/fd0H1440
elif [ "$fmat" = "no" ]; then
echo "Skipping disk formatting...";
else
echo "Please try again.";
exit 1;
fi

echo -n "Need to transfer raw image? "
read rimg
if [ "$rimg" = "yes" ]; then
echo "Transferring image to floppy disk..."
dd if=bootnet.img of=/dev/fd0H1440
elif [ "$rimg" = "no" ]; then
echo "Skipping disk formatting...";
else
echo "Please try again.";
exit 2;
fi

echo "Starting image configuration..."
echo "Mounting disk..."
mount -t msdos /dev/fd0 /mnt/floppy
echo "Costumizing image..."
cp ks.cfg /mnt/floppy
cp syslinux.cfg /mnt/floppy
umount /mnt/floppy
echo "Done"
exit

Typical use and output of this script is presented next.

> ./makefloppy.sh

Customized level3 kickstart floppy creation
Enter level3 node name [b0l3ks0]: b0l3ks3
Complete node IP address 192.168. [23.250]: 23.253



42 B INSTALL CONFIGURATION AND IMPLEMENTATION

Customizing configuration...
Node: b0l3ks3 IP: 192.68.23.253

Insert floppy disk....
Do you want to format floppy? yes
Start formatting disk...
Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.
Formatting ... done
Verifying ... done
Need to transfer raw image? yes
Transferring image to floppy disk...
2880+0 records in
2880+0 records out
Starting image configuration...
Mounting disk...
Costumizing image...
Done

File: nodeinstall.sh
Description: script for node installation through global filesystems recovery using rescue

installation image

#!/bin/sh

#tarballs location
tardir=’/mnt/source/LEVEL3/tarballs’

##### BEGIN of script configuration
#Enter node information:
#node name (change default b0l300):
name=b0l300
#ip address (change default 192.168.23.00)
ipadr=192.168.23.00

#Enter filesystem information; tarballs located on \
# /scratch/731a.install/i386/LEVEL3/tarballs/
#filesystem 1: root
fsname1=hda2
fstar1=rootfs_246.731.tar
fstar1a=usr.731.tar
fsip1=192.168.23.46
#filesystem 2: boot
fsname2=hda1
fstar2=boot.731.tar
#filesystem 3: cdf
fsname3=hda6
fstar3=cdf.731.tar
fstar3a=ks-control-vtest.tar
fstar3b=ks-relay-v1_4_7.tar
#filesystem: swap



B.2 Installation scripts 43

fsswap=hda3
#filesystem: tmp
fstmp=hda5

echo "The node to be installed is $name with ip address $ipadr"

echo "Recreating all filesystems ..."
mke2fs -j /dev/$fsname1
mke2fs -j /dev/$fsname2
mke2fs -j /dev/$fsname3
mke2fs -j /dev/$fstmp
mkswap -j /dev/$fsswap

echo "Mount all partitions..."
mkdir /mnt/$fsname1
mkdir /mnt/$fsname2
mkdir /mnt/$fsname3
mount -t ext3 /dev/$fsname1 /mnt/$fsname1
mount -t ext3 /dev/$fsname2 /mnt/$fsname2
mount -t ext3 /dev/$fsname3 /mnt/$fsname3

echo "Untarring ..."

cd /
echo "Untar directories: root"
cd /mnt/$fsname1
tar xvf $tardir/$fstar1
if [ ! -d /mnt/$fsname1/usr ]; then
mkdir /mnt/$fsname1/usr
fi
if [ ! -d /mnt/$fsname1/boot ]; then
mkdir /mnt/$fsname1/boot
fi
if [ ! -d /mnt/$fsname1/tmp ]; then
mkdir /mnt/$fsname1/tmp
fi
if [ ! -d /mnt/$fsname1/home ]; then
mkdir /mnt/$fsname1/home
fi

cd /mnt/$fsname1/usr
tar xvf $tardir/$fstar1a

cd /
echo "Untar directories: boot"
cd /mnt/$fsname2
tar xvf $tardir/$fstar2

cd /
echo "Untar directories: cdf"
cd /mnt/$fsname3
tar xvf $tardir/$fstar3



44 B INSTALL CONFIGURATION AND IMPLEMENTATION

cd /mnt/$fsname3/level3/filter/control
tar xvf $tardir/$fstar3a
cd /mnt/$fsname3/level3/filter/relay
tar xvf $tardir/$fstar3b

cd /
echo "Changing IP address in ifcfg-eth0 ..."
cd /mnt/$fsname1/etc/sysconfig/network-scripts
sed -e s/$fsip1/$ipadr/ ifcfg-eth0 > tempo
mv tempo ifcfg-eth0

echo "Installed node $name; recovered $fsname1 $fsname2 $fsname3; \
on ‘/usr/bin/date‘ " > /mnt/\$fsname1/root/l3install.log

echo "Update mbr"
umount /mnt/$fsname2
mount -t ext3 /dev/$fsname2 /mnt/$fsname1/boot
chroot /mnt/$fsname1 /sbin/lilo

echo "Un-mounting filesystems..."
umount /mnt/$fsname1/boot
umount /mnt/$fsname2
umount /mnt/$fsname3

echo "Probing floppy disk..."
mkdir /mnt/floppy
mount -t msdos /dev/fd0 /mnt/floppy
flp=‘df | grep floppy | wc | cut -f 1‘
umount /mnt/floppy
while [ $flp -gt 0 ]; do
sleep 5

mount -t msdos /dev/fd0 /mnt/floppy
flp=‘df | grep floppy | wc | cut -f 1‘
echo "Still waiting for floppy disk to be removed... $flp : not zero"
umount /mnt/floppy

done
echo "Floppy drive is now empty."
echo "Done."
echo "The node is now being rebooted..."
sleep 2
reboot


	 Foreword
	1 The Level 3 online computing system
	1.1 The DAQ/Trigger subsystem
	1.2 Computing farm
	1.3 Maintenance & Administration

	2 Recovery
	2.1 Boot image
	2.2 Remote procedure
	2.3 Recovering filesystems
	2.3.1 Filesystem corruption
	2.3.2 Automating procedure
	2.3.3 Installing filesystems

	2.4 Installation through recovery
	2.5 Generality

	3 Installation
	3.1 Kickstart
	3.1.1 Image
	3.1.2 Configuring system installation
	3.1.3 Post configuration
	3.1.4 CDFlevel3 workgroup

	3.2 Installation disk
	3.3 Hard drive based installation
	3.4 Installation through recovery

	A Recovery image configuration and procedure implementation
	A.1 Configuration files
	A.2 Include a new binary
	A.3 Create a recovery floppy
	A.4 Remote recovery procedure
	A.5 Filesystem recovery scripts

	B Install configuration and implementation
	B.1 Configuration files
	B.2 Installation scripts


